Dr. Gregory W. Clark Manchester University

- Presentations
- Specific heat

PHYS432 **Materials Physics**

What is heat capacity? $C = \frac{\partial U}{\partial T} \quad \text{where } U \text{ is the total energy } (C \text{ is normally measured at constant pressure}).}$ $C = \frac{\partial U}{\partial T} \quad \text{where } U \text{ is the total energy } (C \text{ is normally measured at constant pressure}).}$ $C = \frac{\partial U}{\partial T} \quad \text{where } U \text{ is the total energy } (C \text{ is normally measured at constant pressure}).}$ $C = \frac{\partial U}{\partial T} \quad \text{where } U \text{ is the total energy } (C \text{ is normally measured at constant pressure}).}$ $C = \frac{\partial U}{\partial T} \quad \text{where } U \text{ is the total energy } (C \text{ is normally measured at constant pressure}).}$ $C = \frac{\partial U}{\partial T} \quad \text{where } U \text{ is the total energy } (C \text{ is normally measured at constant pressure}).}$ $C = \frac{\partial U}{\partial T} \quad \text{where } U \text{ is the total energy } (C \text{ is normally measured at constant pressure}).}$ $C = \frac{\partial U}{\partial T} \quad \text{where } U \text{ is the total energy } (C \text{ is normally measured at constant pressure}).}$ $C = \frac{\partial U}{\partial T} \quad \text{where } U \text{ is the total energy } (C \text{ is normally measured at constant pressure}).}$ $C = \frac{\partial U}{\partial T} \quad \text{where } U \text{ is the total energy } (C \text{ is normally measured at constant pressure}).}$ $C = \frac{\partial U}{\partial T} \quad \text{where } U \text{ is the total energy } (C \text{ is normally measured at constant pressure.}).}$ $C = \frac{\partial U}{\partial T} \quad \text{where } U \text{ is the total energy } (C \text{ is normally measured at constant pressure.}).}$ $C = \frac{\partial U}{\partial T} \quad \text{where } U \text{ is the total energy } (C \text{ is normally measured at constant pressure.}).}$ $C = \frac{\partial U}{\partial T} \quad \text{where } U \text{ is the total energy } (C \text{ is normally measured at constant pressure.}).}$ $C = \frac{\partial U}{\partial T} \quad \text{where } U \text{ is the total energy } (C \text{ is normally measured at constant pressure.}).}$ $C = \frac{\partial U}{\partial T} \quad \text{where } U \text{ is the total energy } (C \text{ is normally measured at constant pressure.}).}$ $C = \frac{\partial U}{\partial T} \quad \text{where } U \text{ is the total energy } (C \text{ is normally measured at constant pressure.})$ $C = \frac{\partial U}{\partial T} \quad \text{where } U \text{ is the total energy } (C \text{ is normally measured at constant pressure.})$ $C = \frac{\partial U}{\partial T} \quad \text{where } U \text{ is the total energy }$

Heat Capacity

Classically:

$$C = \frac{\partial U}{\partial T} = 3R$$

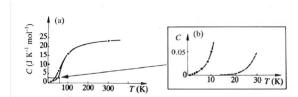
Bad at low T

	273K (J/K)	77K (J/K)
Cu	24.3	12.5
Al	23.8	9.1
Au	25.2	19.1
Rb	26.7	23.6
Fe	24.8	8.1
Na	27.6	20.4
NaCl	24.6	14.0
Diamond	5.0	0.1
Glass	15.0	4.0

Not bad for RT (for many solids)

Heat Capacity

How well does the Einstein expression describe the data?



The Einstein model gives good agreement with experimental data for high T but not for very low T.

Do atoms on a lattice really behave as independent oscillators?

Bonded together \Rightarrow vibrations of an atom affects its neighbours.

How can this be included? Dealing with waves not just oscillations.

Heat Capacity

• Debye model:

Now, include strong interactions between atoms.

At low T Debye gives

ow T Debye gives
$$C = \frac{12R\pi}{5} \left(\frac{T}{\theta_D}\right)^3$$
 where $\theta_D \equiv \frac{\hbar \omega_{\text{max}}}{k_B} = \text{ the Debye temperature}$

 But, for conductors, it's not quite right at really low T (several K)! Need electronic contribution:

A relatively simple model gives

